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ABSTRACT 

The NASA/Goddard Space F l i g h t  Center  Hydrogen Maser Pro- 
gram has  had a s  g o a l s  f o r  many yea r s  t h e  development of 
improved f i e l d  operab le  hydrogen masers, t h e  improvement 
of e x i s t i n g  f i e l d  operab le  hydrogen masers and t h e  devel-  
opment of novel hydrogen maser f requency s t anda rds .  This 
paper p re sen t s  a review of r e c e n t  da t a ,  t aken  both i n  t h e  
l a b o r a t o r y  and i n  t h e  f i e l d ,  i n  t h e s e  a r e a s .  Data is 
presented on t h e  phase and frequency s t a b i l i t y ,  over  t ime 
pe r iods  ex tending  t o  one week, of t h e  new N R  f i e l d  opera- 
b l e  hydrogen masers developed by t h e  Applied Phys ics  Labo- 
r a t o r y  (APL) and t h e  o l d e r  N X  and NP f i e l d  ope rab l e  hydro- 
gen masers developed by Goddard Space F l i g h t  Center and 
maintained and upgraded by Bendix F i e l d  Engineer ing Corpo- 
r a t i o n  (BFEC). Data is presented on t h e  NR masers i n  t h e  
labpgatory  showing frequency s t a b i l i t i e s  wel l  i n t o  t h e  
10- range  and phase s t a b i l i t i e s  we l l  i n t o  t h e  100 ps  
range for  per iods  of  up t o  one day. D a t a i s  presented on 
upgraded NP masers i n  t h e  l a b o r a t o r y  showing t h a t  t h e  
frequency s t a b i l i t y  has been improved s u b s t a n t i a l l y  t o  
v i r t u a l l y  t h e  NR l e v e l .  VLBI d a t a  is presented on t h e  
phase d i f f e r e n c e  between NX-2 a t  Owens Va l l ey ,  C a l i f o r n i a  
and NR-2 a t  F o r t  Davis,  Texas f o r  a one week per iod show- 
i n g ,  a f t e r  removal of a cons t an t  f requency d r i f t ,  a 350 p s  
R M S  phase s t a b i l i t y .  The r o l e  of a temperature  c o n t r o l  
chamber f o r  hydrogen masers developed by BFEC i n  improving 
t h e  long term s t a b i l i t y  of hydrogen masers is d iscussed .  

Extensive developnent work i s  being performed by 
both AFL and BFEC t o  improve t h e  performance of hydrogen 
masers beyond t h e i r  c u r r e n t  l e v e l s .  A q u a r t z  c a v i t y  l i n e r  
designed t o  r e t r o f i t  i n t o  e x i s t i n g  N R ,  NP, and N X  micro- 
wave c a v i t y  s t r u c t u r e s  has been developed by BFEC and APL 
i n  a coopera t ive  e f f o r t .  Th i s  l i n e r  has been i n s t a l l e d  i n  
a n  N R  maser and has been shown t o  reduce t h e  c a v i t y  temper- 
a t u r e  c o e f f i c i e n t  by a f a c t o r  of 8. Data is presented 
showing t h e  s t a b i l i t y  of t h i s  maser a g a i n s t  o t h e r  N R  
masers. A completely qua r t z  c a v i t y  and s t o r a g e  bulb 
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ABSTRACT (cont  ) 

s t r u c t u r e ,  c a l l e d  t h e  i n t e g r a l  c a v i t y ,  which w i l l  a l s o  
r e t r o f i t  i n t o  the  N R ,  NX, and NP masers is being developed 
by BFEC and APL i n  another  cooperat ive e f f o r t .  T h i s  
s t r u c t u r e  should reduce the c a v i t y  temperature coe f f i -  
c i e n t  by a f a c t o r  of 25 o r  more and should improve t h e  
maser's frequency s t a b i l i t y  under mechanical shock. Data 
is presented on t h e  recent  progress i n  t h e  developnent of 
an ex te rna l  bulb v a r i a b l e  volume hydrogen maser primary 
f mquenc y standard.  

The NASA/Goddard Space F l i g h t  Center Hydrogen Maser Program has 
had a s  its goals  f o r  many years t h e  development of improved f i e l d  operable 
hydrogen masers, t h e  improvement of e x i s t i n g  hydrogen masers, and the  
development of novel hydrogen maser frequency standards. This  paper repre- 
s e n t s  a review of recent  d a t a  taken both i n  the l abora to ry  and i n  the f i e l d  
i n  these  areas.  The paper is broken i n t o  two bas ic  s e c t i o n s  repor t ing  on 
d a t a  taken by Bendix Fie ld  Engineering Corporation and the  Applied Physios 
Laboratory of' Johns Hopkina Univers i ty ,  t h e  two main contraotors  t o  the 
NASA Hydrogen Maser Program. 

I BENDIX FIELD ENGINEERING 

The Bendix F ie ld  Engineering Corporation (BPEC) has supported t h e  
NASA Goddard Spaae F l i g h t  Center hydmgen maser program f o r  t he  pas t  t e n  
years .  Recently, BFBC has expanded i t s  support i n  response t o  the increas-  
i n g  demands of t h e  NASA Crus ta l  Dynamiaa P r o j e c t  and t h e  NASA researah  
program. Both hydrogen maser maintenance and operat ions and hydrogen 
maser researoh and developnent are now performed a t  BFEC1s new 4500 square 
foot Hydrogen Maser F a c i l i t y  loaated  a t  BFEC Headquarters i n  Columbia, 
Maryland . 

I Thermal Chamber f o r  Hydromn Masers 

Figure I shows a thermal chamber developed by BFEC t o  improve the  
lbng term frequenay s t a b i l i t y  of hydrogen masers by improving t h e i r  the r -  
m a l  environment. These chambers t y p i c a l l y  reduce room temperature f luc tu -  
a t i o n s  by a f a c t o r  of about 100 and t y p i c a l l y  keep t h e  temperature of t he  
hydrogen maser f r o m  f l u c t u a t i n g  no more than 10-20mC i n  a l abora to ry  envi- 
r o m e n t  (1C  room temperature f luc tua t ions ) .  Figure 2 shows t h e  thermal 
chamber with a s i d e  panel removed. This shows some of the  main f e a t u r e s  of 
t h e  thermal chamber: 

1. Completely f i e l d  dismantlable so the  u n i t  can be brought i n t o  a 
room thmugh a 30 inch door. 
2. Uses thermoelectr ic  coolers  f o r  h i& r e l i a b i l i t y .  
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3. Has 18 Rotron fans t o  create an 1800cfm a i r  flow i n  t h e  chamber 
t o  reduce t h e  effects of tempera ture  g r a d i e n t  changes. (The t h e r -  
mal conduc t iv i t y  o f  t h e  moving a i r  is equ iva l en t  t o  t h a t  of  alumin- 
um. 
4. Shock mounts on t h e  chamber and the fans t o  e l i m i n a t e  60Hz 
v i b r a t i o n  problems. 
5. A failsafe thermosta t  t o  prevent  a c c i d e n t a l  overheat  of t h e  
maser i n  ca se  of chamber f a i l u r e .  
6 .  Sepa ra t e  f u s e s  f o r  t h e  t h e r m o e l e c t r i c  c o o l e r s  and t h e  f a n s  s o  
i n d i v i d u a l  f a i l u r e s  i n  t h e s e  dev ices  w i l l  no t  keep t h e  chamber 
f r o m  ope ra t i ng .  
7. Remote and l o c a l  alarm ou tpu t s .  

The chamber has  a l s o  been s u c c e s s f u l l y  used t o  improve t h e  l ong  term 
s t a b i l i t y  of Hewlett Packard high performance cesium s t a n d a r d s ,  

F igure  3 shows t y p i c a l  thermal  chamber performance i n  a good labo-  
r a t o r y  environment. The f i g u r e  shows NR-1's upper c a b i n e t  temperature  and 
t h e  corresponding air temperature  o u t s i d e  t h e  box (smoothed wi th  a 1,5hr  
t ime  cons t an t  temperature  probe) .  I n  s ta t im environments where t h e  tem- 
pe ra tu re  has  va r i ed  a s  much a s  10K, t h e  temperature  i n  t h e  chamber has 
va r i ed  less  than 0.1K. 

VLBI Data 

F igures  4 and 5 show a 7 day phase(group de l ay )  intercomparison 
between NR-2 a t  F o r t  Davis,  Texas and N X - 2  a t  Owens Va l l ey ,  C a l i f o r n i a  by 
very  l c n g  b a s e l i n e  interferometery(VLBI)(refl). Figure 4 shows t h e  phase 
d i f f e r e n c e  i n  seconds with only a frequency o f f s e t  term removed from t h e  
d a t a ( a s  w e l l  as nonclock VLBI terms such a s  e a r t h  r o t a t i o n ) ,  Notice t h a t  
t h e  d a t a  has  t h e  q u a d r a t i c  behavior a s s o c i a t e d  with uniform frequency 
d r i f t .  Figure 5 shows the  same d a t a  wi th  a uniform frequency d r i f t  term 
a l s o  removed. The least squa re s  fit used t o  gene ra t e  t h i s  f i g u r e  produced 
c lock  parameters  as fol lows:  

The Rm phase(group d e l a y )  dev ia t i c l l  f r o m  t h e  f i t  was 347ps. 

Repair and Upgrade o f  Hydrogen Masers 

F igure  6 shows s e v e r a l  NASA NP and N X  hydrogen masers being 
r epa i r ed  and upgraded i n  BF'ECts Hydrogen Maser F a c i l i t y .  The upgraded NP 
and N X  masers have rece ived  new c a v i t y  thermal c o n t r o l s ,  s y n t h e s i z e r s ,  
VXCOt s , r e c e i v e r  components , and d i s t r i b u t i o n  a m p l i f i e r s  and have had t h e  
phys ics  packages r e b u i l t .  Figure 7 shows t h e  before upgrade and the  a f t e r  
upgrade frequency s t a b i l i t i e s  o f  NP-2 measured a g a i n s t  NR-6 from 1 to  1000 



seconds averag ing  time. Notice t h e  almost  one o r d e r  of magnitude improve- 
ment i n  performance. F igure  8 shows t h e  frequency s t a b i l i t y  o f  t h e  
upgraded NP-2 and t h e  non-upgraded NP-3 measured a g a i n s t  NX-3 from lo3 t o  
5 10 seconds averaging time. NP-2 and NX-3 were i n  thermal  chambers and 

NP-3 was not .  Thus t h e  f a c t o r  o f  t e n  o r  more long  term s t a b i l i t y  improve- 
ment shown is due both t o  t h e  maser upgrade and t h e  use of  t h e  hydrogen 
maser thermal  chambers. 

Quar tz  Cavi ty  R e t r o f i t s  f o r  N P ,  NX,  and NR Hydrogen Masers 

BFEC and APL have a j o i n t  e f f o r t  t o  improve t h e  temperature  c o e f f i -  
c i e n t  and t h e  mechanical s t a b i l i t y  o f  NP, NX, and NR hydrogen masers wi th  
r e t r o f i t a b l e  qua r t z  c a v i t i e s ,  There are 2 r e t r o f i t a b l e  des ign3  being dev- 
eloped. The Hybrid Cavi ty  shown i n  F igu re  9 u s e s  a q u a r t z  c y l i n d e r  coated 
on t h e  o u t s i d e  wi th  s i l v e r  a s  an  i n t e r n a l  l i n e r  i n  t h e  microwave cav i ty .  
T h i s  reduces t h e  temperature  c o e f f i c i e n t  of  t h e  microwave c a v i t y  by about a 
f a c t o r  o f  5,  bu t  s t i l l  a l lows  t h e  microwave c a v i t y ' s  frequency t o  be set  
wi th  tunable  end p l a t e s  and a l l ows  one t o  use temperature  tun ing  of  t h e  
c a v i t y  a s  wi th  t h e  convent iona l  aluminum cav i ty .  The Hybrid Cavi ty  i s  being 
t e s t e d  i n  NRB by APL and is  r epo r t ed  on i n  t h e  APL sec t ion .  The temperature  
c o e f f i c i e n t  o f  NRB wi th  t h e  Hybrid Cavi ty  h a s  been measured by APL as 

The second r e t r o f i t a b l e  des ign  being developed is  t h e  I n t e g r a l  
Cavity whose main components(storage bulb no t  shown) are shown i n  F igure  
10. I n  t h e  i n t e g r a l  c a v i t y  a l l  t h e  p a r t s  making up t h e  microwave c a v i t y  a r e  
made of  qua r t z .  Af t e r  trimming t h e  c a v i t y  t o  t h e  proper  frequency, a l l  t h e  
p i e c e s  ( i nc lud ing  t h e  s t o r a g e  bulb)  w i l l  be  fused  or cemented toge the r .  
This  des ign  w i l l  have a c a v i t y  temperature  c o e f f i c i e n t  a f a c t o r  o f  25 
smaller than a convent iona l  aluminum c a v i t y  and should ach ieve  g r e a t e r  
mechanical s t a b i l i t y  because o f  t h e  f u s i n g  o f  t h e  p i eces .  An i n t e g r a l  
c a v i t y  has  a l r eady  been f a b r i c a t e d  and w i l l  be t e s t e d  i n  NRX. It h a s  no t  
been determined y e t  whether temperature  o r  v a r a c t o r  tun ing  w i l l  be used. 

Ex te rna l  Bulb Hydrogen Maser 

The Ex te rna l  Bulb Hydrogen Maser is  a v a r i a b l e  volume hydrogen 
maser being developed by BFEC f o r  NASA. The purpose of  t h e  maser is t o  
provide a primary hydrogen maser frequency s t anda rd  which w i l l  e l i m i n a t e  
t e f l o n  wa l l  frequency s h i f t s  and o t h e r  accuracy l i m i t i n g  frequency s h i f t s  

t o  t h e  1 x l e v e l ( r e f 2 ) .  As p a r t  o f  t h e  development e f f o r t ,  t h e  maser 
has  been t e s t e d  wi th  a 1/2 m i l  t h i c k  t e f l o n  f i l m  bu lb  and a long time 
cons t an t  co l l ima to r (wi thou t  t h e  e x t e r n a l  bu lb) .  The r e s u l t s  of t h a t  tes t  
demonstrat ing an  ope ra t i ng  l i n e  Q o f  6.5E9 are shown i n  F igure  11. The 
maser has  a l s o  s u c c e s s f u l l y  opera ted  a t  9QC.  Curren t ly  t h e  maser is being 
r e b u i l t  t o  overcome magnetic problems. 



NR MASER STABILITY DATA 

The NR maser, s h ~ w n  i n  Pig.12, has  s e v e r a l  advantages over t h e  e a r l i e r  
NX and NP masers. Thei r  b igges t  advantage is  an  i n t e r n a l  64-channel micro- 
processor .  This  microprocessor  provides d i agnos t i c  and monitoring informa- 
t i o n  on many maser ope ra t ions ,  and provides  automated c o n t r o l  f o r  c a v i t y  
tuning.  Cavi ty tun ing  can be accomplished by au to tuning  a g a i n s t  ano the r  
maser o r  t h e  c r y s t a l  o s c i l l a t o r  i n t e r n a l  t o  t h e  maser; o r  by p rog raming  
t h e  microprocessor t o  a d j u s t  t h e  c a v i t y  f o r  a pred ic ted  d r i f t ,  S t a b i l i t y  
d a t a  on s e v e r a l  NR masers a r e  presented ,  These da t a  were measured i n  t h e  
Time and Frequency f a c i l i t y  of The Johns Hopkins Univers i ty  Applied Physics  
Laboratory. 

Maser Intercomparisons 

S t a b i l i t y  measurements between two o r  more masers a r e  accomplished by 
o f f s e t t i n g  t h e  frequency of one of our  masers,  NR-6, by -5 X 10-8. The 
s i g n a l  from NR-6 can then be mixed wi th  t h e  s i g n a l  from a second maser a t  
200 MHz t o  o b t a i n  a 10 Hz bea t .  An HP 5300 t ime i n t e r v a l  counter  i s  then  
used t o  measure t h e  phase d i f f e r e n c e  between NR-6 and a second maser. This  
measurement technique using an o f f s e t  maser provides a 20 m i l l i o n  m u l t i p l i -  
c a t i o n  f a c t o r  f o r  t h e  t i m e  i n t e r v a l  measurement; one mi l l i second on t h e  
counter  corresponds t o  50 picoseconds of phase d i f f e r e n c e  a t  200 MHz. 

During a l l  t h e  d a t a  runs  t o  be presented ,  NR-6 was loca t ed  i n  a n  
environmental c o n t r o l  chamber; and was programmed t o  compensate f o r  a pre- 
d i c t e d  c a v i t y  d r i f t .  A t  r e g u l a r  i n t e r v a l s ,  but  not  dur ing  any of t h e  d a t a  
runs  presented  he re ,  NR-6 was tuned. 

Recently we began us ing  an automated system f o r  record ing  phase d i f f e r -  
ence measurements between t h r e e  maser p a i r s  ( a l l  r e f e renc ing  NR-6) a t  i n t e r -  
v a l s  of 100 seconds, onto f loppy d i s k s .  This  system al lows continuous phase 
d i f f e r e n c e  information over long per iods  of t ime. Temperature data f o r  t h e  
room and t h e  maser environmental chambers a r e  a l s o  recorded a t  hourly i n t e r -  
v a l s .  

Figure13 shows t h e  r e s i d u a l s  t o  a l e a s t  squares  f i t  of t h e  phase d i f f e r -  
ence between NR-3 and NR-6 over  a seven day span. (This t rea tment  of t h e  
data is c o n s i s t a n t  wi th  t h a t  of t h e  VLBI u s e r s ) .  NR-3 was loca t ed  i n  an 
environmental chamber; NR-3 was not  au to tuning  during t h i s  t ime. Over t h e  
ma jo r i t y  of t h e  d a t a  span, t h e  r e s i d u a l s  remained wi th in  4 .5 ns ,  wi th  ex- 
tremes of ? 1.0 ns .  Within t h i s  d a t a  a r e  two r e l a t i v e l y  l a r g e  phase jumps 
of approximately ,5 ns .  These jumps a r e  a r t i f a c t s  of our  measurement sys- 
tem, which we a r e  working on e l imina t ing .  Even wi th  t h e s e  jumps, t h e  RMS 
dev ia t ion  of t h e  week long d a t a  was 0.316 n s ,  

The Allan Variance of t h e  (NR-3) - (NR-6) d a t a  shown i n  F ig .  13, re -  
moving t h e  two d i s c o n t i n u i t i e s ,  i s  shown i n  Fig.14. The Al lan  Variance of 
both t h e  raw d a t a  and t h e  r e s i d u a l s  ( i . e .  d r i f t  removed da t a )  a r e  shown. 



Er ro r  b a r s  a r e  given f o r  t h e  d r i f t  r a t e  removed d a t a  but  s i m i l a r  e r r o r  b a r s  
apply f o r  t h e  r a w  data. These e r r o r  b a r s  were est imated by 

* 

Er ro r  = f '1- % 

where N is t h e  number of ad jacent  t ime i n t e r v a l s  of l eng th  t au  ( r ) .  The 
f a c t o r  of two i s  requi red  because t h e  r a w  data i s  i n  phase r a t h e r  t han  
frequency. Both masers were assumed t o  c o n t r i b u t e  equa l ly  t o  t h e  no i se ,  
and hence a f a c t o r  of 2-% was included i n  t h e  c a l c u l a t i o n s .  

F igure  14 shows t h a t  N R - ~ ' s  s t a b i l i t y  a t  100,000 seconds is 4 X 
f o r  t h e  d r i f t  r a t e  removed da t a .  

Figure15 aga in  shows t h e  r e s i d u a l s  t o  a l e a s t  squares  f i t  of t h e  phase 
d i f f e r e n c e  between NR-B and NR-6. NR-B has t h e  i n t e g r a l  c a v i t y  liner with  
t h e  improved temperature c o e f f i c i e n t  , approximately 7 X ~ O - ~ ~ I O C .  A week 
long d a t a  span i s  shown. NR-B was not  au to tuning ,  and w a s  l oca t ed  i n  an  
environmental c o n t r o l  chamber, However, NR-B's chamber was ope ra t ing  near  
i t s  upper temperature c o n t r o l  l i m i t ,  causing l a r g e r  v a r i a t i o n s  as shown i n  
t h e  temperature p l o t  i n  Fig.15. One would not  expect temperature v a r i a -  
t i o n  as l a r g e  a f a c t o r  i n  NR-B's performance a s  o t h e r  NR masers without a 
qua r t z  l i n e r  and, i n  f a c t ,  t h e  r e s i d u a l s  p l o t t e d  i n  Fig.15 show a peak-to- 
peak v a r i a t i o n  of only + .5 ns .  The RMS dev ia t ion  of t h e  d a t a  over  t h e  
seven days w a s  on ly  0.251 ns. (Again t h e r e  appeared a s i n g l e  d i s c o n t i n u i t y  
resulting from t h e  measurement system.) 

The Allan Variances wi th  t h e  d r i f t  r a t e s  removed of NR-5, NR-B, and 
NR-2 whose r e s i d u a l s  were not  shown, a r e  p l o t t e d  i n  Fig.16. Shor te r  term 
d a t a  w a s  measured only on NR-2. A l l  masers w e r e  measured r e l a t i v e  t o  NR-6 
and t h e  va r i ances  and e r r o r  b a r s  were c a l c u l a t e d  i n  t h e  same manner a s  t h a t  
descr ibed  e a r l i e r  f o r  NK-3. NR-5 and NR-2 were au to tuning  whi le  NR-B was 
not .  

Figure16 coupled wi th  Fig.14 on NR-3's s t a b i l i t y ,  i l l u s t r a t e s  t h e  range 
of performance i n  t h e  hydrogen masers APL has completed. Thei r  s t a b i l i t i e s  
are seen t o  be  w e l l  i n t o  t h e  10-15 range f o r  t a u s  (r's) of 500 - 100,000 
seconds when d r i f t  is  removed. 

NR-1 Long Term S t a b i l i t y  

NR-1 maser r e s i d e s  a t  APL on a long term b a s i s  and se rves  a s  our  
l abo ra to ry  s tandard .  Taking advantage of NR-1 ' s  a v a i l a b i l i t y ,  w e  i nves t iga -  
t e d  t h e  performance of a hydrogen maser being operated as a c lock  r e l a t i v e  
t o  ou r  l a b o r a t o r y ' s  cesium opt ion  004 Hewlett-Packard frequency s tandards .  

For t e n  months, from September 1981 through June 1982,  we maintained 



a  continuous record of t h e  phase d i f f e r e n c e  between NR-l* and our  Cesium 
793.  The phase d i f f e r e n c e  was measured a t  5 MHz us ing  a  dua l  balance 
t ime de lay  mixer with a bea t  frequency of about .25  Hz r e l a t i v e  t o  each 
s tandard .  I n  our Time and Frequency Laboratory wi th in  APL we maintain 
t h r e e  cesium s tandards .  Timing information i s  repor ted  t o  B I H  (Bureau 
I n t e r n a t i o n a l  de 1 ' ~ e u r e )  on these t h r e e  cesiums r e l a t i v e  t o  our  paper 
c lock ,  and t h e  USNO (United S t a t e s  Naval Observatory) Master Clock ill, 
wi th  whom we t r a n s f e r  t ime using po r t ab l e  cesium c locks .  BIB ,  i n  t u r n ,  
c a l c u l a t e s  and publ i shes  bimonthly, t h e  r a t e s  of t h e  r epo r t ing  c locks  
r e l a t i v e  t o  UTC (Universal  Time Coordinated) .  Figure17 shows both the 
bimonthly c lock  r a t e s  of our t h r e e  cesium s tandards  publ ished by B I H ,  
and t h e  der ived  c lock  r a t e  of NR-1. 

Figure17 shows t h a t ,  a s  a  c lock ,  NR-1 performed a s  good o r  b e t t e r  than  
t h e  b e s t  t e n  month da t a  span of any of t h e  t h r e e  cesiums. In  f a c t ,  t h e  
a c t u a l  performance of t h e  NR-1 maser i s  most probably masked by t h e  l i m i t e d  
r e s o l u t i o n  i n  t h e  B I H  publ ished d a t a ,  given only t o  f 10 ns ;  and by t h e  
performance of t h e  cesium t r a n s f e r  s tandard .  

Another advantage of t h e  NR-1 hydrogen maser opera t ing  a s  a  c lock  
is t h e  a b i l i t y  t o  s e t  t h e  frequency without advers ly  a f f e c t i n g  t h e  in-  
he ren t  s t a b i l i t y  of t h e  device.  This  i s  not  t r u e  of present  cesiums. 

Af t e r  our  t e n  month data run comparing NR-1 t o  Cesium 793 ,  t h e  maser 
ope ra t ing  condi t ions  were changed; NR-1 was placed i n  a continuous auto- 
tune  mode. This  ope ra t ing  mode al lows t h e  c a v i t y  b i t  r e g i s t e r  t o  automati- 
ca l ly  a d j u s t  t o  compensate f o r  t h e  c a v i t y  frequency d r i f t .  The c a v i t y  
r e g i s t e r  va lue  was p r in t ed  out a t  four  hour i n t e r v a l s  and l a t e r  converted 
t o  t h e  frequency s h i f t  through a measured va lue  of t h e  frequency s h i f t  
per  c a v i t y  r e g i s t e r  bit**. Figure18 shows t h e s e  c a v i t y  r e g i s t e r  d r i f t  cor- 
r e c t i o n s  p l o t t e d  over  a fou r  month i n t e r v a l .  

A r a t h e r  s i g n i f i c a n t  p i ece  of d a t a  on t h e  maser 's  performance was ob- 
t a ined  q u i t e  un in t en t iona l ly .  During t h e  f o u r  month t ime per iod ,  our  room 
a i r  condi t ioner  su f f e red  a  f a i l u r e  over a  weekend when no one was p re sen t  t o  
immediately c o r r e c t  t h e  s i t u a t i o n .  NR-1 was i n  an environmental c o n t r o l  
chamber, but  t h e  room temperature r o s e  above the box's  c o n t r o l  l i m i t ,  The 
sp ike  i n  t h e  d a t a  of Fig.18 i s  t h e  c a v i t y  r e g i s t e r  t r y i n g  t o  compensate f o r  
t h e  temperature c o n t r o l  failure. The behavior of NR-1 a f t e r  temperature 

I c o n t r o l  was r e s t o r e d  i s  worthy of no te ;  t h e  c a v i t y  came back t o  t h e  same 
frequency a s  t h a t  j u s t  be fo re  t h e  temperature c o n t r o l  f a i l e d .  This  behavior 

* During t h i s  t ime per iod ,  NR-1 was i n  an environmental c o n t r o l  box f o r  
temperature c o n t r o l .  NR-1 w a s  no t  au to tuning  during t h i s  t i m e .  

** The frequency s h i f t  per  b i t  f o r  NR-1 during t h i s  t ime per iod  was 
2.03 X 10-16/bit .  
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fol lowing a  f a i l u r e  i s  a g r e a t  advantage f o r  our  masers ope ra t ing  i n  remote 
a r e a s  where s h o r t  term f a i l u r e s ,  such as t h e  one j u s t  descr ibed ,  a r e  more 
l i k e l y  t o  occur.  

Ignoring t h e  temperature c o n t r o l  f a i l u r e ,  t h e  d r i f t  c o r r e c t i o n s  t o  t h e  
c a v i t y  shown i n  Fig.18 appear t o  i n c r e a s e  i n  a  n e a r l y  l i n e a r  manner wi th  
t ime. A quadra t i c  l e a s t  squares  f i t  of t h e  d a t a  was c a l c u l a t e d ,  which g ives  
t h e  l i n e a r  d a i l y  d r i f t  of t h e  c a v i t y  a s :  

Higher o rde r  terms of c a v i t y  d r i f t  a s  a  func t ion  of t ime a r e  i n s i g n i f i c a n t  
r e l a t i v e  t o  t h e  l i n e a r  term. The d a t a  i n  Fig.18 a r e  frequency c o r r e c t i o n s  
made t o  c a v i t y  t o  compensate f o r  i t s  d r i f t ,  t h e r e f o r e ,  the  inc reas ing  f r eq -  
uency compensates f o r  a c a v i t y  frequency t h a t  is  d r i f t i n g  downward i n  f r eq -  
uency. 

In  a d d i t i o n  t o  t h e  c a v i t y  r e g i s t e r  d a t a  shown i n  Fig.18, two determina- 
t i o n s  of t h e  NR-1 c a v i t y  d r i f t  were made; one i n  e a r l y  August 1981, and t h e  
o t h e r  i n  l a t e  February 1982. The t o t a l  change i n  NR-1's c a v i t y  r e g i s t e r  
va lue  over a  per iod of 78 days,  was obtained i n  each c a s e  and an  average 
d a i l y  d r i f t  r a t e  was ca l cu la t ed .  These c a l c u l a t i o n s  agreed t o  w i th in  10% 
of t h e  d a i l y  c a v i t y  d r i f t  c a l c u l a t e d  f o r  t h e  four  month d a t a  shown i n  Fig.18 

Linear  Dai ly D r i f t  (averaged over 78 days) :  

-4.4 X 10-15/day period ending 
4 August 1981 

-5.1 X 10-15/day period ending 
24 February 1982 

The c a v i t y  d r i f t  rate of NR-1 has  remained e s s e n t i a l l y  cons tan t  over a  t ime 
period of g r e a t e r  than  one year  with an unce r t a in ty  of + 5 X 1 0 - ~ 6 / d a ~ .  
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Figure  1. Hydraogen Maser Thermal Control Chamber 



F i g u r e  2. Thermal Chamber w i t h  Si.de Panel Removed 



Figure 3 .  Thermal Chamber Performance in a Laboratory Environment 
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VLBl GROUP DELAY DIFFERENCE 
BETWEEN NX-2 AT OWENS VALLEY, CALIFORNIA - - - .  . 

AND NR-2 AT FORT DAVIS, TEXAS 

x= x o  + yo t + % Do t Z  AND EARTH MOTION TERMS REMOVED 
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F i g u r e  5. VLBI Phase Com~ar i son  Be~ween NF.-2 ant RS-2 - 
Frequency D r i f t  Removed 

Data COURTESY of  
C l!N!GHT,, PHOENIX CsRP. 



Figure 6 .  Hydrogen Masers Being Repafred and Upgraded at the 
BFEC Hydrogen Maser F a c i l i t y  
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1 AFTER UPGRADE 

BEFORE UPGRADE BEFORE UPGRADE 

NP-2 VS NR6 
Data taken by the 

Applied Physics Laboratory 
Data taken by the \ 1 

Applied Physic5 

7 (seconds) 

Figure 7. NP-2 Short Term Frequency S t a b i l i t y  Before and After Upgrade 
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COMPARISON OF NP MASER STABILITY WITH AND 
WITHOUT THERMAL CHAMBERS 

NP-3 NOT 
THERMAL 

NP-2 AND 
THERMAL 

T (SECONDS) 

IN A 
CHAMBER 

NX-3 IN 
CHAMBERS 

Figure 8. I@ Maser Long Term Stability Before and After Upgrade 







Figure 11. Line Q of External Bulb Maser with Film Storage Bulb 
Versus Hydrogen Flux 



Figure 12. NR Maser 
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QUESTIONS AND ANSWERS 

None for Paper #I 9 



DR. COATES: 

Earl i e r  t h i s  afternoon, we were t a l  k i n g  about frequency standards and c locks.  
From here on, we ' re  t a l k i n g  about networks f o r  synchroniz ing var ious c locks 
and, of course, you r e a l l y  have t o  have both i n  order  t o  have v i a b l e  pre- 
c i s i o n  t ime and t ime i n t e r v a l  systems. 

The f i r s t  paper i n  t h i s  session i s  e n t i t l e d ,  "Timing Subsystems 
Devel opment/Network Synchroni z a t i  on Experiments" by Ken Backe . 




